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Nonunique steady states in the disordered harmonic chain

Xin Zhou,1 Hu Chen,2 and Mitsumasa Iwamoto1

1Department of Physical Electronics, Tokyo Institute of Technology, O-okayama 2-12-1, Meguro-ku, Tokyo 152-8552, Japa
2Center for Advanced Study, Tsinghua University, Beijing 100084, China

~Received 30 May 2002; published 5 December 2002!

The heat transport in disordered harmonic chains~DHCs! with arbitrary heat baths is studied, based on a
general formulation developed by Dhar@Phys. Rev. Lett.86, 5882~2001!#. The obtained temperature profile of
a steady state is very unusual for any heat bath:~i! it is not unique, but dependent on the initial condition;~ii !
it may be highly nonlinear, even though the temperature difference of the two ends of the system is in zero
limit, and the temperature gradient¹T is not inversely proportional to the system size; and~iii ! when a DHC
is coupled to two thermostats with the same temperature, the temperature of the system is still not uniform. The
localized higher frequency normal modes induced by the mass disorders are responsible for these strange
properties.
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The study of heat conduction in one dimensional syste
is an interesting problem in the context of both nonline
dynamics and nonequilibrium statistical physics, which h
attracted a lot of attention in recent years@1#. Many authors
had investigated the heat conduction of some class
Hamiltonian systems for the purpose of finding the mac
scopic Fourier law,J52K(T)¹T, in these model systems
whereJ is the heat current,¹T is the local temperature gra
dient, andK is the heat conduction. As a general conclusi
a system size~N! dependence ofJ, J;1/Na has been con-
firmed, at least in the thermodynamic limit. Usually, peop
believe that the temperature profile of the system is linear~at
least while the difference of temperatures of two endsDT is
small!, so ¹T;1/N, hence heat conductionK;N12a. For
a51, K is independent ofN, we say that the heat conductio
of the system is normal or the system obeys Fourier’s l
otherwise, we say thatK is abnormal. Up to now, a variety o
results have been reported in many systems@1–5#. But since
most works are limited to numerical simulations of som
nonlinear systems, it is very difficult to get definite concl
sions. Some authors have shown qualms about the sim
tions @6–10#.

In these previous studies about heat conduction, m
different heat baths@1# were arbitrarily adopted, since thes
researchers believed that the heat conduction is the prop
of the system itself, it should be independent of the bound
conditions, although some earlier studies revealed that
size dependence ofJ ~exponenta) is different for two par-
ticular heat baths@2,3# in a disordered harmonic chai
~DHC!. Recently, Dhar@6# restudied heat conduction in
DHC with arbitrary heat baths, he found thata is usually
dependent on the choice of heat baths. By supposing¹T
;1/N , he concluded that the heat conduction depends on
heat baths in the DHC. But is¹T truly proportional to 1/N in
a DHC? As we know, boundary conditions may lead
jumps in temperatures, hence correct the gradient of t
perature@11,12# but usually the correction is small and di
appears in the thermodynamic limit. However, if the te
perature profile of the system is nonlinear and its d
mainly occurs at the boundary zone@13#, ¹T may be not
proportional to 1/N. Another relative question is about th
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temperature profile of a DHC. Very recently, in a DHC, H
et al. @8,14# found numerically that the stationary temper
ture is not unique, but Dhar@15# thought that the results ma
be due to the insufficient equilibration times in simulation
by using a particular heat bath. Whether the unique ste
state exists in a DHC is still not very clear. For general h
baths or Hamiltonians, it is very difficult to mathematical
prove the existence and uniqueness of a steady state@1#.

In this paper, we try to study these questions in a DH
with arbitrary heat baths, based on a general formulat
developed by Dhar@6#. We found some interesting result
~1! the temperature profile of the DHC is highly nonlinea
~2! the local temperature gradient in the middle zone of
chain is proportional toN23/2 rather thanN21, but it is still
independent of the heat baths, the main drop of tempera
only occurs at the boundary zone;~3! even DHC is coupled
to two thermostats with the same temperature, the temp
ture of the system is still inhomogeneous, it means that
energy cannot transport very well to the system from th
mostats, so the system cannot be driven to an equilibr
state by the thermostats; and~4! a logical conclusion is tha
the initial energies of particles in the middle zone of cha
cannot be dissipated very well, then their stationary tempe
tures are dependent on their initial value. Hence we pr
generally that the unique steady state in a DHC does
exist. By analyzing the normal modes localized at the mid
zone of the DHC, we explained the nonuniqueness of ste
state.

We consider the DHC system,

H5(
l 51

N pl
2

2ml
1(

l 50

N
1

2
~xl2xl 11!2, ~1!

wherexl are the displacements of the particles around th
equilibrium positions,pl are their momenta, andml are the
random masses. Here, the particles 1 andN are coupled to
heat baths including dissipative and noise terms, which
isfy the fluctuation dissipation theorem~FDT!. The equations
of motion are
©2002 The American Physical Society02-1
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m1ẍ1522x11x21E
2`

t

dt8AL~ t2t8!x1~ t8!1hL~ t !,

mlẍl522xl1xl 211xl 11 ,

l 52,3, . . . ,~N21!, ~2!

mNẍN522xN1xN211E
2`

t

dt8AR~ t2t8!x1~ t8!1hR~ t !,

where AL,R(t) and hL,R(t) describe dissipation and nois
We have a particular solution of Eq.~2!,

xl~ t !5
1

2pE2`

`

dvŶlm
21~v!ĥm~v!eivt,

where

Ŷ~v!5F̂~v!2Â~v!,

F̂ l ,m52d l ,m111~22mlv
2!d l ,m2d l ,m21 , ~3!

Âl ,m5d l ,m@AL~v!d l ,11AR~v!d l ,N#,

ĥ l5hL~v!d l ,11hR~v!d l ,N .

Here the function of frequencyf (v) is the Fourier transform
of the function f (t). The noiseh(t) is considered with the
correlator @6#, ^h(v)h(v8)&52pTI(v)d(v1v8), where
for the left and right heat sources, the temperatures areTL
and TR , respectively. The dissipation termA(v)5a(v)
2 ib(v). From the FDT, we haveI (v)52b(v)/v. In this
paper, we choose the sameA(v) at both boundaries.

The heat current can be written as

J5K F E
2`

t

dt8AL~ t2t8!x1~ t8!1hL~ t !G ẋ1~ t !L
5

~TL2TR!

4p E
2`

`

dv j ~v!, ~4!

and the temperature of thei th particle is

Ti5^miẋi
2~ t !&5

TL

2pE2`

`

dvai~v!1
TR

2pE2`

`

dvbi~v!,

~5!

where ^•••& denotes the noise average.j (v), ai(v), and
bi(v) are independent of the thermostats temperaturesTL
andTR , we have
06120
j ~v!54b2~v!/uDY1,Nu2,

ai~v!5mi2b~v!vuDYi 11,Nu2/uDY1,Nu2,

bi~v!5mi2b~v!vuDY1,i 21u2/uDY1,Nu2,

where

DY1,N5@1,2A~v!#S D1,N 2D1,N21

D2,N 2D2,N21
D @1,A~v!#T, ~6!

DY1,i 215@D1,i 21 ,2D2,i 21#@1,A~v!#T,

DYi 11,N5@Di 11,N ,2Di 11,N21#@1,A~v!#T.

HereDl ,m andDYl ,m are the determinants of the submatr
of F̂ and Ŷ beginning with thel th row and column and
ending with themth row and column, respectively. For
DHC, we calculate the current and temperature for giv
realizations of disorder and then perform disorder averag
In this paper, the masses of particles are a uniform distri
tion from 12dm to 11dm anddm50.22. Considering the
symmetry of the system, we have

^ai~v!&5^bN112 i~v!&. ~7!

From there, we notê . . . & as a disorder sample average. S
we can rewrite the local temperature as

Ti5TLt j1TRti , ~8!

wherej 5N112 i andt i51/2p*bi(v)dv is the normalized
temperature. The local temperature gradient¹T'(Tj
2Ti)/( j 2 i ). In the middle zone of the chain, if we choos
j 5N112 i , then

¹T'~TR2TL!
t j2t i

j 2 i
'~TR2TL!¹t. ~9!

For a DHC, using the transport matrixTi , we have@2,6#

S D1,N 2D1,N21

D2,N 2D2,N21
D 5T1T2•••TN ,

~D1,i 21 ,2D2,i 21!5uTi 21Ti 22•••T1 , ~10!

~Di 11,N ,2Di 11,N21!5uTi 11Ti 12•••TN ,

where

Tl5S 22mlv
2 21

1 0 D and u5~1,0!.

From the Furstenberg theorem@6,16,17# on the limiting
form of the product of random noncommuting variables,
almost any choice of the sequence of random masses$ml%,
we have

lim
n2.`

1

n
lnuTi 11Ti 12•••Ti 1nvu5g~v!.0 ~11!
2-2
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for almost any nonzero vectorv, in the limit v→01. For
finite n, Dhar @6# found numerically that this result was tru
only for v.1/n1/2.

We first chooseTL5TR5T, usually, a uniform tempera
ture profile is expected, henceTi5T for any i. Since the
normalized temperaturet i is independent of theTL andTR ,
from Eq. ~8!, we know thatt i should be symmetric abou
(N/2,1/2), in other words,tN/21 i1tN/22 i51. But from Eq.
~11! and the numerical results shown in Fig. 1, we find th
the bN/2(v) exponentially decreases as frequency increa
unlessv,a/AN, wherea;10, is a constant. SotN/2 is zero
rather than the expected 1/2 in the thermodynamic limitN
→`). Then we obtain the first surprising result,the system
cannot be driven to the equilibrium state by thermostats w
the same temperature. In Fig. ~2!, t i is shown as a function o
position in the DHC (N51000) with three different hea
baths, which are the Lebowitz modelA(v);2 igv, the
Rubin-Greer modelA(v);12 iv, and the Fourier mode
A(v);12 iv2, respectively@6#. The obtainedt i is very
small excepti;N, the temperature is highly nonlinear, an
it has a finite value only while i;N. A noted fact is thatt i
'0.5, except fori 51 or N in an ordered harmonic chai
~OHC!, since the dissipation-term-satisfied the FDT, can
sure thermal equilibration of the system. The real tempe
ture distribution of the DHC is also shown in the left-low
inset of Fig. 2, whereTL5TR51, the temperature of the
middle zone is far lower than the temperature of the bou
ary zone. It means that the temperature distribution is in
mogeneous in the DHC, even though the heat flow is zero
the right-upper inset of Fig. 2, the approximate linear te

FIG. 1. Frequency dependence of normalized temperature o
(N/2)th particlebN/2 for N5100 andN52500 ~inset! in a DHC
with a particular heat bath. We find thatbN/2 decreases fast whe
v.a/AN, a;10. There are similar results for other heat baths
06120
t
es

h

-
a-

-
-

In
-

perature profile in the middle zone is shown, whereTL51
and TR55, but in the left boundary zone, the temperatu
gradient is negative~not shown!. We numerically calculated
the heat currentJ, the results were in agreement with that
Dhar @6#. Moreover, we also calculated the temperaturetN/2
and the temperature gradient¹tN/2 , which are shown in Fig.
3. We found thattN/2 decreases to zero as Nincreases.tN/2
;N2w as N is large, in whichw is dependent on the hea
baths. It means that the motion states of particles in
middle zone of the DHC are independent of the tempera
of thermostats in the thermodynamic limit.

In the low frequency range, the numerical results of Dh
@6# indicate that the determinant^uD1,Nu& in the DHC equals
approximately to the value in the OHC, and since thej (v)
andbi(v) ~when i is not nearN) exponentially decrease in
the higher frequency zone, we can approximately calcu
the heat currentJ and the normalized temperaturet i by inte-
grating j (v) andbi(v) in low frequency zone. In the OHC
D1,N(v)5sin@k(N11)#/sin(k), where v52sin(k/2). Using
the approximation in the formula ofj (v), Dhar gave the
value ofa in a DHC with any heat bath. Fort i , if i !N and
N is a large number, we approximately haveN2 i;N, the
upper limit of the integral is;1/AN. We have

t j2t i;E
0

1/AN
2b~v!v cos~k/2!sin@~ j 2 i !k# f ~k!dk,

~12!

where

he

FIG. 2. The normalized temperature distributiont i in the DHC
with three different heat baths, the system sizeN51000. In the left
lower inset, the inhomogeneous temperature profile is shown w
TL5TR51, whereTL andTR are the temperatures of two thermo
stats. In the right-upper inset,TL51 andTR55, the temperatures
of the middle zone are shown. We only show the result of one h
bath in the inset, the results of other heat baths are similar.
f ~k!5
sin@k~N11!#1uA~v!u2sin@k~N21!#22ReA~v!sin~kN!

usin@k~N11!#22A~v!sin~kN!1A2~v!sin@k~N21!#u2
.

2-3
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Here i and j are at the middle of the chain, satisfyingi !N,
j !N, and i 1 j 5N11.

From Eq.~12!, we find that the gradient of temperatu
¹t'(t j2t i)/( j 2 i ) is proportional toNb and the obtainedb
is 23/2 for very general heat baths, which includeA(v)
;2 isgn(v)vs and A(v);12 isgn(v)vs. The result has
been tested by numerical calculations on the Lebow
model, Rubin-Greer model, and the Fourier model, which
shown in inset of Fig. 3. As we know,¹T is usually sup-
posed as (TR2TL)/N. But in the DHC, the local temperatur
gradient is dependent on the position of the chain, moreo
it is negative in the left boundary zone~the middle tempera-
ture is very low!. For the strange temperature profile, t
usually defined local thermal conductivityK is negative in
some positions, which can not be due to the tempera
dependence ofK. However, except for the boundary zones,K
can be locally defined,K;J/¹T, and in the middle zone o
the chain,¹T;N23/2.

These surprising results can be understood from the
quency distribution of heat current and temperature~kinetic
energies!. Due to the mass disorders, the higher freque
normal modes are localized in the DHC. These localiz
modes cannot transport very well thermal energy through
whole system, so the temperature in the middle zone is
dependent of the thermostats. Similarly, the energy in
middle zone of the chain also cannot transport very wel
the ends of the chain, which are coupled with the therm
stats, so it is not dissipated, hence we conclude that the
perature profile of a DHC should be dependent on the in
condition.

We can more clearly understand the dependence of
initial condition. For the motion equation@Eq. ~2!#, its solu-

FIG. 3. The temperature of the (N/2)th particle as a function o
the system sizeN for three different heat baths. Inset, the gradie
of temperature in the middle zone of the DHC as a function ofN.
t
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tion is the sum of the particular solution shown in Eq.~3! and
the general solutions of equationŶx̂50, which are

xl5(
n

cnun
l exp~ ivnt !. ~13!

Here cn are constant numbers, which are dependent on
initial condition of the system,un

l is the l th element of ei-
genvectorûn , the corresponding eigenvalue isvn , which is
usually a complex number. Before coupling with therm
stats, the normal modes of the system are$û0n% ~the solution
of equationF̂û50). After coupling with thermostats, thes
modes will transfer to the normal modes of the coupled s
tem $ûn%, this is a process of energy dissipation. In DH
due to the mass disorder, the higher frequency modes o
system are localized. Supposing a modeû0m ~the corre-
sponding frequency isv0m) is localized in the middle zone
of the chain @17#, hence u0m

1 'u0m
N '0 @18#, then

Ŷ(v0m)û0m50 is also true, it means that the mode almo
does not directly couple with the thermostats, and since th
are no interactions between the different normal modes,
energy of the mode is not lost after the system is coupled
thermostats. From these discussions, we conclude that
steady state’s temperature in the middle zone of the D
mainly depends on the distribution of their initial motio
among the localized modes. Very recently, using a particu
heat bath, considering a harmonic chain, consisting of
types of particles~a segment of light particles is embedded
the middle of the other two segments of heavy particles!, Hu
et al. @8# numerically found that the steady states are dep
dent on the initial condition. They also found that the stea
state is unique when adding a very small fraction of anh
monicity in the DHC. But in a comment of Dhar@15#, the
numerical result is doubted. Our results generally verify
nonuniqueness of a steady state in a DHC and show tha
existence of noninteracting, localizing normal modes is
sponsible for these abnormal properties. Similarly, the h
baths’ dependence of heat conduction found by Dhar
DHCs @6# is due to the same reason. These abnormal pr
erties may not be true in other systems without the nonin
active localized normal modes.

In summary, we conclude that there are some very spe
thermal properties in a DHC, such as the inhomogene
temperature distribution when the heat flow is zero,
nonunique steady states, the strange temperature profile
so on. The reason of these properties is due to the exist
of noninteracting localizing normal modes in the DHC.
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