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Nonunique steady states in the disordered harmonic chain
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The heat transport in disordered harmonic ch&dslCs) with arbitrary heat baths is studied, based on a
general formulation developed by DH#&thys. Rev. Lett86, 5882(2001)]. The obtained temperature profile of
a steady state is very unusual for any heat b@jtit is not unique, but dependent on the initial conditi@in)
it may be highly nonlinear, even though the temperature difference of the two ends of the system is in zero
limit, and the temperature gradieWifT is not inversely proportional to the system size; &iid when a DHC
is coupled to two thermostats with the same temperature, the temperature of the system is still not uniform. The
localized higher frequency normal modes induced by the mass disorders are responsible for these strange
properties.
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The study of heat conduction in one dimensional systemgemperature profile of a DHC. Very recently, in a DHC, Hu
is an interesting problem in the context of both nonlinearet al. [8,14] found numerically that the stationary tempera-
dynamics and nonequilibrium statistical physics, which hagure is not unique, but Dhdd 5] thought that the results may
attracted a lot of attention in recent yeqt3. Many authors be due to the insufficient equilibration times in simulation or
had investigated the heat conduction of some classicdly using a particular heat bath. Whether the unique steady
Hamiltonian systems for the purpose of finding the macrostate exists in a DHC is still not very clear. For general heat
scopic Fourier law,J=—K(T)VT, in these model systems, baths or Hamiltonians, it is very difficult to mathematically
wherelJ is the heat curreny T is the local temperature gra- prove the existence and uniqueness of a steady [sthte
dient, andK is the heat conduction. As a general conclusion, In this paper, we try to study these questions in a DHC
a system sizé€N) dependence od, J~1/N® has been con- with arbitrary heat baths, based on a general formulation
firmed, at least in the thermodynamic limit. Usually, peopledeveloped by Dhaf6]. We found some interesting results:
believe that the temperature profile of the system is liftar (1) the temperature profile of the DHC is highly nonlinear;
least while the difference of temperatures of two eAdsis  (2) the local temperature gradient in the middle zone of the
smal), so VT~ 1/N, hence heat conductiok~N*~2. For  chain is proportional toN~*? rather tharN %, but it is still
a=1, Kis independent ofl, we say that the heat conduction independent of the heat baths, the main drop of temperature
of the system is normal or the system obeys Fourier’s lawpnly occurs at the boundary zon@) even DHC is coupled
otherwise, we say tha€ is abnormal. Up to now, a variety of to two thermostats with the same temperature, the tempera-
results have been reported in many systginsb|. But since  ture of the system is still inhomogeneous, it means that the
most works are limited to numerical simulations of someenergy cannot transport very well to the system from ther-
nonlinear systems, it is very difficult to get definite conclu- mostats, so the system cannot be driven to an equilibrium
sions. Some authors have shown qualms about the simulatate by the thermostats; afd) a logical conclusion is that
tions[6-10]. the initial energies of particles in the middle zone of chain

In these previous studies about heat conduction, mangannot be dissipated very well, then their stationary tempera-
different heat bathfl] were arbitrarily adopted, since these tures are dependent on their initial value. Hence we prove
researchers believed that the heat conduction is the propergenerally that the unique steady state in a DHC does not
of the system itself, it should be independent of the boundargxist. By analyzing the normal modes localized at the middle
conditions, although some earlier studies revealed that theone of the DHC, we explained the nonuniqueness of steady
size dependence df (exponenta) is different for two par- state.
ticular heat bathg2,3] in a disordered harmonic chain We consider the DHC system,

(DHC). Recently, Dhar{6] restudied heat conduction in a

DHC with arbitrary heat baths, he found thatis usually N N
dependent on the choice of heat baths. By suppoSiiig E p_ E
~1/N , he concluded that the heat conduction depends on the = 2m, =%
heat baths in the DHC. But BT truly proportional to 1N in

a DHC? As we know, boundary conditions may lead to

jumps in temperatures, hence correct the gradient of temwherex, are the displacements of the particles around their
perature[11,12] but usually the correction is small and dis- equilibrium positionsp, are their momenta, anah, are the
appears in the thermodynamic limit. However, if the tem-random masses. Here, the particles 1 &hdre coupled to
perature profile of the system is nonlinear and its dropheat baths including dissipative and noise terms, which sat-
mainly occurs at the boundary zoh&3], VT may be not isfy the fluctuation dissipation theore(RDT). The equations
proportional to IN. Another relative question is about the of motion are

X|+l)21 (1)
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. t
le1:_2X1+X2+f dt,AL(t_t,)Xl(t/)+ 77|_(t),

MX = = 2X+ X _1+ X 41,

1=23,...(N-1), )
. t
mNXN:_ZXN+XN*l+J dt’AR(t_t,)Xl(t’)“l‘ 7]R(t),

where A| g(t) and 5 g(t) describe dissipation and noise.
We have a particular solution of E(R),

X(t)= % f  doiH@) n(@)e
where
Y(0)=d(0)-A(w),
D == mi1t(2—Mw®) & n— 8 m1, 3
Al m= 8 m[AL(®) 8 1+ Ar(®) 8 ],

m=n(0)8 1+ 7r(©) 8 -

Here the function of frequencl( w) is the Fourier transform
of the functionf(t). The noisey(t) is considered with the
correlator [6], (n(w)p(w'))=27TI(w)é(w+w'), where
for the left and right heat sources, the temperaturesTare
and Ty, respectively. The dissipation terA(w)=a(w)
—ib(w). From the FDT, we havé(w)=2b(w)/w. In this
paper, we choose the samAéw) at both boundaries.
The heat current can be written as
Xl(t)>
(T -Tg)

[ doi(), @

t
J= < |: f,xdt,AL(t_t’)Xl(t’)+ 77|_(t)

and the temperature of thén particle is

‘o TL o TR o
7i—:<mixi(t)>:§ _mdwai(w)-kz _mdwbi(w)-
(5
where(- - -} denotes the noise averagdw), a;(w), and

b;(w) are independent of the thermostats temperatiifes
andTg, we have
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j(w)=4b*()/|DYn[?,
ai(w)=m;2b(w)w|DY; 1 n|?/[DY1n|%
bi(w)=m;2b(w)w|DYy;_1|%|DY [,
where

Dl,N _Dl,N—l

DYl,N=[l,—A(w)]( )[LA(w)]T, (6)

Don —Don-s
DYy;_1=[D1j_1,—Doj_1[1A(®)]",

DY+ in=[Di+1n,—Disin-11[1A(w)] .

HereD, ,, andDY, ,, are the determinants of the submatrix

of ® and Y beginning with thelth row and column and
ending with themth row and column, respectively. For a
DHC, we calculate the current and temperature for given
realizations of disorder and then perform disorder averages.
In this paper, the masses of particles are a uniform distribu-
tion from 1— ém to 1+ ém and 6m=0.22. Considering the
symmetry of the system, we have

(ai(w))=(bnt1-i(w)). (7)

From there, we noté. . .) as a disorder sample average. So,
we can rewrite the local temperature as

7i—:TLtj+TRti y (8)

wherej=N+1—i andt;=1/27[b;(w)dw is the normalized
temperature. The local temperature gradieWl~(7;
—=7)/(j—1). In the middle zone of the chain, if we choose
j=N+1-i, then

ti—t
— ~(Tr—=T) VL. 9

VT~ (T T

For a DHC, using the transport matrix, we have[2,6]

(Dl,N _Dl,N—l

=TT, - Ty,
Don —DZ,N_l) te N

(D1j-1,=D2j—1)=uUTi 4T 5Ty, (10

(D”lvN’_Di+1,N71):UTi+1Ti+2' T

where

2-mw? -1
=l 0

) and u=(1,0).

From the Furstenberg theorel,16,17 on the limiting
form of the product of random noncommuting variables, for
almost any choice of the sequence of random magsgs
we have

1
lim ﬁ|n|Ti+1Ti+2'"Ti+nU|:7(w)>0 (11

n—>owx
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FIG. 2. The normalized temperature distributignn the DHC

FIG. 1. Frequency dependence of normalized temperature of th&ith three different heat baths, the system dize 1000. In the left
(N/2)th particleby, for N=100 andN= 2500 (inseb in a DHC  lower inset, the inhomogeneous temperature profile is shown when
with a particular heat bath. We find thhy,, decreases fast when Ti=Tr=1, whereT, andTg are the temperatures of two thermo-

w>al\N, a~10. There are similar results for other heat baths. ~Stats. In the right-upper insef; =1 andTg=5, the temperatures
of the middle zone are shown. We only show the result of one heat

bath in the inset, the results of other heat baths are similar.
for almost any nonzero vectar, in the limit «—0". For

fc;:lltyefg,r Z'f%ﬂéo“”d numerically that this result was true perature profile in the middle zone is shown, whe&e=1

We first choosel| =Tg=T, usually, a uniform tempera- and TR:.S’ but ".‘ the left boundary ZOne, the temperature
tre profile is expected he;’]cE:T f,or any i. Since the gradient is negativgnot shown. We numerically calculated
normalized temperatune’is independent of thé’ andT the heat currend, the results were in agreement with that of

L R
from Eq. (8), we know thatt; should be symmetric about Dhar [6]. Moreover, we also calculated the temperatiyg

(N/2,1/2), in other wordstyyy,: +ty,. = 1. But from Eq. and the temperature gradiévity,,, which are shown in Fig.

. I ' 3. We found that,,, decreases to zero as iNcreasesty;,
(11) and the numerical results shown in Fig. 1, we find thatNN,W asN is large, in whichw is dependent on the heat

the by,() exponentially decreases as frequency increasegaths_ It means that the motion states of particles in the

unlessw<a/JN, wherea~10, Is a constant. Stz IS Z€10 " middle zone of the DHC are independent of the temperature
rather than the expected 1/2 in the thermodynamic limit ( of thermostats in the thermodynamic limit.

—¢). Then we obtain the f.|.rst'surpr|smg resufte system . In the low frequency range, the numerical results of Dhar
cannot be driven to the equilibrium state by thermostats W|th[6] indicate that the determinatiD; |} in the DHC equals
the g@mgtemperatur(n Fig. (2), t is_ shown as f”‘f“”C“O” of approximately to the value in the 1(’)NHC, and since jhe)
position in the DHC (\lleOQ) with three d|ff_erent heat andb;(w) (wheni is not neaN) exponentially decrease in
bath's, which are the Lebow!tz modél(w)~—|7w, the the higher frequency zone, we can approximately calculate
Rubm-Gre_er 2modeA(w)~l—|w, and the_ FO“”F_” model the heat currend and the normalized temperatugedy inte-
A(w)wl_'“.’ , respectively[6]. Thg qbtamedti IS very gratingj(w) andb;(w) in low frequency zone. In the OHC,
small excepi ~N, the temperature is highly nonlinear, and D (@) =sik(N+1)]/sin), where o=2sin(/2). Using

it has a finite value only while<N. A noted fact is that; tthapproximation i the formula (). Dhar gave the
~0.5, except for =1 orNin an °fd_ef°id harmonic chain value ofa in a DHC with any heat bath. Far, if i<N and
(OHC), since the dissipation-term-satisfied the FDT, can eny is a large number, we approximately habe-i~N, the
sure thermal equilibration of the system. The real temperal-J er limit of the inté ral is~ 1/JN. We have '
ture distribution of the DHC is also shown in the left-lower ~PP 9 '

inset of Fig. 2, wherel|  =Tg=1, the temperature of the 1N

middle zone is far lower than the temperature of the bound- ] _tiwf 2b(w)w cogk/2)sin (j —i)k]f(k)dk,

ary zone. It means that the temperature distribution is inho- 0 (12)
mogeneous in the DHC, even though the heat flow is zero. In

the right-upper inset of Fig. 2, the approximate linear tem-where

~ sifk(N+1)]+[A(w)|?sin k(N —1)]— 2ReA()sin(kN)
|sifk(N+1)]—2A(w)sin(kN) + AX(w)sifk(N—1)]]2

f(k)
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g tion is the sum of the particular solution shown in E8).and
f = the general solutions of equatidfx=0, which are
0.14 T
] | = e T . x,=2 cnu'nexp(iwnt). (13
oy L] o - n
10 R ™ o
5 \:{H - Herec, are constant numbers, which are dependent on the
-.-llz 1 j i * e s [ .
= g . initial condition of the systemy,, is thelth element of ei-
0.01{ 404 e . genvector,, the corresponding eigenvalueds, , which is
] ‘\: S usually a complex number. Before coupling with thermo-
: : w stats, the normal modes of the system{arg,} (the solution
_ 109 . N . 1000 o of equationdu=0). After coupling with thermostats, these
100 N 1000 modes will transfer to the normal modes of the coupled sys-

tem {U,}, this is a process of energy dissipation. In DHC,
FIG. 3. The temperature of thé(2)th particle as a function of due to the mass disorder, the higher frequency modes of the

the system siz&\ for three different heat baths. Inset, the gradientsystem are localized. Supposing a mdﬂtﬁn (the corre-
of temperature in the middle zone of the DHC as a functiolNof  sponding frequency i®om) is localized in the middle zone
of the chain [17], hence uj,~ub,~0 [18], then

Y(wom)Uom=0 is also true, it means that the mode almost
does not directly couple with the thermostats, and since there
are no interactions between the different normal modes, the
energy of the mode is not lost after the system is coupled to
. S ) s thermostats. From these discussions, we conclude that the
~—isgn()w® and A(w) ~1-isgn)w”. The result has qoqqy state's temperature in the middle zone of the DHC
been testeq by numerical calculatlons_ on the Le.bow'tzmainly depends on the distribution of their initial motion
model, .Ru.bm-Greer.modeI, and the Fourle_r model, which are:‘:1mong the localized modes. Very recently, using a particular
shown in inset of Fig. 3. As we know(T is usually Sup- peat path, considering a harmonic chain, consisting of two
pose_d aS.TR_TL)/N' Butin the DH.C' the local te_mperature types of particlesa segment of light particles is embedded in
gradient is dependent on the position of the chain, moreoveg,e miggie of the other two segments of heavy particles

it is negative in the left boundary zorithe middle tempera- o 5| 18] numerically found that the steady states are depen-
ture is very low. For the strange temperature prc.)flle,. the yent on the initial condition. They also found that the steady
usually defined local thermal conductivity is negative in  iota is unique when adding a very small fraction of anhar-
some positions, which can not be due to the temperaturﬁ]onicity in the DHC. But in a comment of Dhail5], the
dependence df. However, except for the boundary zonkss,  ,merical result is doubted. Our results generally verify the
can be locally defined{~J/VT, and in the middle zone of 5 niqueness of a steady state in a DHC and show that the

H __N|—3/2 ) . N L. )
the chain VT~N "% existence of noninteracting, localizing normal modes is re-
These surprising results can be understood from the fresngnsiple for these abnormal properties. Similarly, the heat

quency distribution of heat current and temperatliieetic 5o dependence of heat conduction found by Dhar in
energies Due to the mass disorders, the higher frequencysicq 6] is due to the same reason. These abnormal prop-
normal modes are localized in the DHC. These localizedyjeg may not be true in other systems without the noninter-
modes cannot transport very well thermal energy through the e [ocalized normal modes.

whole system, so the temperature in the middle zone is in- |, summary, we conclude that there are some very special
dependent of the thermostats. Similarly, the energy in the,armal properties in a DHC, such as the inhomogeneous
middle zone of the chain also cannot transport very well 1qemperature distribution when the heat flow is zero, the
the ends of the chain, which are coupled with the thermog, o nique steady states, the strange temperature profile, and

stats, so it is not dissipated, hence we conclude that the teny, o5 The reason of these properties is due to the existence
perature profile of a DHC should be dependent on the initia}; noninteracting localizing normal modes in the DHC.
condition.

We can more clearly understand the dependence of the X. Z. was supported by the Grants-in-Aid for Scientific
initial condition. For the motion equatidiEq. (2)], its solu-  Research of JSPS.

Herei andj are at the middle of the chain, satisfyingN,
j<N, andi+j=N+1.

From Eq.(12), we find that the gradient of temperature
Vit~ (t;—t;)/(j —1i) is proportional toN” and the obtaine@
is —3/2 for very general heat baths, which includ¢w)
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